Complex Analysis (for Physics)

Midterm Exam
December 9, 2022 (18:30-20:30)

university of groningen

Please turn over and read the instructions!

1) Prove that if $|z|=1$ then $\left|\frac{\bar{b} z+\bar{a}}{a z+b}\right|=1$ for all complex numbers a, b, $(a, b) \neq(0,0)$.
2) Find all complex number solutions of the equation $z^{2}+|z|=0$. Write your final answer in algebraic form.
3) Show that the complex function $w=z+\frac{1}{z}$ maps the circles $|z|=r$ (with $r>1$) onto ellipses. What happens when $r \rightarrow 1$?
4) Consider the complex function $f(x+i y)=\left(x^{2}+2 y\right)+i\left(x^{2}+y^{2}\right)$ and determine the points $z_{0} \in \mathbb{C}$ at which the derivative $f^{\prime}\left(z_{0}\right)$ exists.
5) Determine the points at which the complex function $g(z)=\frac{1}{(1-\sin z)^{2}}$ has no derivative and compute its derivative where it exists.
6) Verify that the function $v(x, y)=y+e^{x^{2}-y^{2}} \sin 2 x y$ is harmonic in \mathbb{C} and find a harmonic conjugate $-u(x, y)$ such that $u(0,0)=3$.

Formula sheet

Numbers: $z=x+i y$ (algebraic form), $x, y \in \mathbb{R}, i^{2}=-1, \bar{z}=x-i y$ Real and imaginary parts: $x=\operatorname{Re}(z)=\frac{z+\bar{z}}{2}, y=\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$ Basic operations: If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then $z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right), z_{1} \cdot z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+x_{1} y_{2}\right)$

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}, \quad z_{2} \neq 0
$$

Polar form: $z=r(\cos \theta+i \sin \theta), r \geq 0, \theta \in(-\pi, \pi]$
Modulus: $r=|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}}$
Argument: $\theta=\operatorname{Arg}(z)$ (principal value), $\arg (z)=\operatorname{Arg}(z)+2 \pi k, k \in \mathbb{Z}$ Identities: $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2},|\bar{z}|=|z|, \arg (\bar{z})=-\arg (z)$
$\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
Triangle inequality: $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
De Moivre's theorem: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta, n \in \mathbb{Z}$
Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$
Exponential form: $z=r e^{i \theta}$
Functions: $w=f(z)=f(x+i y)=u(x, y)+i v(x, y)$
Complex exponential: $e^{z}:=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
$e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}, e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$
Trigonometric functions: $\cos z:=\frac{e^{i z}+e^{-i z}}{2}, \sin z:=\frac{e^{i z}-e^{-i z}}{2 i}$
Complex Logarithm: $\log z:=\log |z|+i \operatorname{Arg} z$ (principal value)
Derivatives: $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$
Cauchy-Riemann equations: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Laplace's equation: $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$, solutions are called harmonic

Instructions

- write your name and student number on the envelope and on the top of each sheet of writing paper!
- use the writing (lined) and scratch (blank) paper provided, raise your hand if you need more paper
- start each question on a new page
- use a pen with black or blue ink
- do not use any kind of correcting fluid or tape
- any rough work should be crossed through neatly so it can be seen
- this is a closed-book exam, you are not allowed to use the textbook or your notes or any other written material
- you are allowed to use the formula sheet provided or a simple pocket calculator
- programmable/graphing calculators are not allowed, nor the use of electronic devices (tablet, laptop, phone, etc.) to solve the exercises
- your work should be clearly and logically structured
- explain your reasoning using words
- show all your calculations, an answer without any computation will not be rewarded
- each problem is worth 15 points
- you get 10 free points
- upon completion ${ }^{11}$ place your worksheets in the envelope and submit them at the front desk

[^0]
[^0]: ${ }^{1}$ At the end of the exam or after you finished whichever is sooner.

